

УЗЕЛ УПРАВЛЕНИЯ СПРИНКЛЕРНЫЙ ВОДОЗАПОЛНЕННЫЙ

"Прямоточный-(65,80,100,150)"

РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ ДАЭ 100.314.000 РЭ

ПРОИЗВОДИТЕЛЬ ОСТАВЛЯЕТ ЗА СОБОЙ ПРАВО ВНОСИТЬ ИЗМЕНЕНИЯ В КОНСТРУКЦИЮ УЗЛА УПРАВЛЕНИЯ БЕЗ ПРЕДВАРИТЕЛЬНОГО УВЕДОМЛЕНИЯ.

1 НАЗНАЧЕНИЕ

Узел управления спринклерный водозаполненный (далее по тексту – УУ) предназначен для работы в спринклерных установках водяного и пенного пожаротушения; осуществляет подачу огнетушащей жидкости в стационарных автоматических установках; выдает сигналы о своем срабатывании и для включения пожарного насоса.

УУ соответствует климатическому исполнению О категории размещения 4 для работы с нижним предельным значением температуры плюс 4°С по ГОСТ 15150-69.

Пример обозначения узла управления спринклерного водозаполненного DN100:

УУ-С100/1,6В-ВФ.О4 «Прямоточный - 100» ТУ 4892-128-00226827-2014.

2 ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Основные технические характеристики приведены в таблице 1.

Таблица 1

Наименование параметра	Значение	
Рабочее давление, МПа		
минимальное	0,14	
максимальное	1,60	
Коэффициент потерь давления, ξ_{yyC} *:		
DN65	$5,8642 \times 10^{-7}$	
DN80	$4,6296\times10^{-7}$	
DN100	$1,6975\times10^{-7}$	
DN150	$0,3858 \times 10^{-7}$	
Время срабатывания, с, не более **	2	
Время задержки сигнала о срабатывании, с ***	4, 8, 12, 16	
Потребляемая мощность, Вт, не более	1	
Назначенный срок службы, лет	10	
Среднее время восстановления работоспособности клапана, час, не более	0,5	

Примечания

3 УСТРОЙСТВО И ПРИНЦИП РАБОТЫ

- 3.1 Общий вид, масса, габаритные и присоединительные размеры УУ приведены на рисунках 1, 2, 3, гидравлическая принципиальная схема УУ приведена на рисунке 4, устройство клапана на рисунках 5, 6, печатная плата модуля УУ с расположением клемм и перемычек приведена на рисунке 7.
- 3.2 Клапан (К) сигнальный спринклерный «Баге плюс» является основным элементом УУ спринклерной водозаполненной системы. Клапан нормально закрытое запорное устройство, предназначенное для пуска огнетушащего вещества при срабатывании спринклерного оросителя и выдачи управляющего гидравлического импульса.
- 3.3 Клапан состоит из корпуса 1 с входным "А" и выходным "Б" отверстиями, затвора 2, установленного шарнирно на оси 3, который прижимается к седлу 4 двумя пружинами 5. Необходимое уплотнение обеспечивается резиновой пластиной 6 закрепленной на затворе при помощи компенсатора 7 (КМ3) и обратного клапана (КО) 8 (для УУ DN100 и DN150) препятствующего сбросу давления в питающем трубопроводе при его уменьшении в подводящем трубопроводе, или болта 9 с гайкой 10 (для УУ DN65 и DN80 обратный клапан установлен снаружи, компенсатор выполнен в корпусе). Ось в корпусе фиксируется от смещения двумя пробками 11. В корпусе предусмотрено окно для ремонта и обслуживания, закрытое крышкой 12 с прокладкой 13. В корпусе для связи с внешними устройствами сигнализации служит сигнальное отверстие "С", для контроля состояния служат рабочее "Р" и побудительное "П" отверстия. Дренажное отверстие "Д" предназначено для быстрого слива жидкости при техническом обслужи-

^{*} Потери давления в спринклерном УУ $\mathbf{P}_{\mathbf{yyC}}$, м вод. ст. определяются по формуле $\mathbf{P}_{\mathbf{yyC}} = \boldsymbol{\xi}_{\mathbf{yyC}} \cdot \boldsymbol{\gamma} \cdot \mathbf{Q}^2$, где $\boldsymbol{\xi}_{\mathbf{yyC}}$ – коэффициент потерь давления по СП 5.13130.2009; $\boldsymbol{\gamma}$ – плотность воды, кг/м³; \mathbf{Q} – расчетный расход воды (раствора пенообразователя). м³/ч.

^{**} Время срабатывания УУ указано при минимальном давлении. Фактическое время срабатывания зависит от величины рабочего давления и определяется при испытаниях спринклерной системы.

^{***} Время задержки сигнала о срабатывании предназначено для сведения к минимуму вероятности выдачи ложных сигналов, вызываемых резкими колебаниями давления источника водоснабжения.

вании. Контрольное отверстие "К" предназначено для проверки работоспособности спринклерной водозаполненной системы.

- 3.4 Два трехходовых крана (ВМ1, ВМ2) предназначены для отключения манометров при техническом обслуживании.
- 3.5 Два сигнализатора давления (HP1, HP2), установленные в модуле УУ, предназначены для выдачи сигнала при срабатывании УУ.
 - 3.6 Манометр (МН1) предназначен для контроля давления в подводящем трубопроводе.
 - 3.7 Манометр (МН2) предназначен для контроля давления в питающем трубопроводе.
- 3.8 Кран (КН1) с компенсатором (КМ1) предназначен для проверки сигнализаторов давления и работоспособности УУ (в дежурном режиме закрыт).
- 3.9 Краны (КН2) предназначены для закрытия и открытия сигнального отверстия при установке УУ в дежурный режим (в дежурном режиме открыт).
 - 3.10 Компенсатор (КМ2) предназначен для создания подпора в сигнальной линии.
- 3.11 Кран (КН3) предназначен для слива жидкости в дренаж из клапана и питающего трубопровода (в дежурном режиме закрыт).
 - 3.12 Компенсатор (КМ3) предназначен для подпитки питающего трубопровода.
- 3.13 При срабатывании спринклерного оросителя давление в питающем трубопроводе и в полости над затвором снижается, жидкость под избыточным давлением во входной полости клапана открывает затвор, и часть ее по кольцевой канавке седла под давлением поступает в сигнальное отверстие и по трубопроводу поступает в сигнальную линию. На пути стока жидкости по дренажной трубке в дренаж в сигнальной линии установлен компенсатор (КМ2), создающий дополнительное сопротивление жидкости и обеспечивающий необходимое давление для срабатывания сигнализаторов давления (НР1, НР2), установленные в модуле УУ. Сигнализаторы давления выдают сигналы для управления насосом и на пульт центрального наблюдения, УУ переходит в рабочий режим.

4 ПОРЯДОК УСТАНОВКИ И ПОДГОТОВКИ К РАБОТЕ

- 4.1 Общие указания.
- 4.1.1 При получении УУ необходимо проверить сохранность упаковочной тары.
- 4.1.2 После распаковки проверить комплектность изделия по руководству по эксплуатации и произвести внешний осмотр изделия и его комплектующих.
- 4.1.3 Эксплуатацию УУ производить в соответствии с требованиями настоящего руководства по эксплуатации.
 - 4.2 Установить УУ на подводящий трубопровод в соответствии с проектом.
 - 4.3 Подключить модуль УУ.
- 4.3.1 Снять верхнюю крышку распределительной коробки для обеспечения доступа к печатной плате модуля УУ и ее клеммнику, открутив винт.
 - 4.3.2 Установка нулевой задержки сигнала о срабатывания УУ:
 - убрать перемычку коммутатора XP3 на печатной плате;
 - подключить УУ к внешним приборам, согласно схеме электрической принципиальной (рис. 7) к контактам 7, 8, 9, 10 клеммника (в зависимости от проекта), при этом питание на плату подавать не нужно.
 - 4.3.3 Установка задержки сигнала о срабатывания УУ из ряда 4, 8, 12 и 16 с:
 - установить перемычку коммутатора ХРЗ на печатной плате;
 - установить время задержки сигнала о срабатывании, исходя из требований проекта, путем установки перемычек коммутаторов XP1 и XP2 на печатной плате в необходимое положение;
 - подключить УУ к внешним приборам, согласно схеме электрической принципиальной (рис. 7) к контактам 3, 4, 5, 6 клеммника (в зависимости от проекта);
 - подать напряжение питания от 9 до 30 В на плату, при этом индикатор загорится зеленым светом, (без подачи напряжения задержка сигнала о срабатывании отсутствует).
 - 4.3.4 Закрыть крышку распределительной коробки.
- 4.4 После монтажа УУ провести испытание на герметичность монтажных соединений пробным давлением согласно проекту.
 - 4.5 Установку УУ в дежурный режим выполнять в следующей последовательности:
 - закрыть все органы управления (краны КН1, КН2, КН3) в схеме гидравлической принципиальной (см. рис. 4);
 - открыть задвижку 3Д для заполнения системы огнетушащей жидкостью и создания в клапане и питающем трубопроводе давления, контроль давления производить по манометрам МН1, МН2;

- открыть кран КН2 для связи сигнального отверстия с атмосферой, дать стечь накопившейся воде из сигнальной линии.
- 4.6 Утечки жидкости в дежурном режиме быть не должно. Убедиться в отсутствии воздушных «мешков» в распределительных трубопроводах. Учитывайте расширение пластиковых трубопроводов. Рекомендуемая производительность насоса-жокея − от ½ до ⅔ от производительности спринклерного оросителя в секции.
 - 4.7 Провести пробный ручной пуск:
 - открыть кран КН1, при падении давления затвор клапана должен открыться, а сигнализаторы давления НР1 и НР2 должны выдать сигнал о срабатывании клапана (дополнительно при установленной задержки сигнала о срабатывания по истечении времени загорится индикатор красным светом);
 - УУ установить в дежурный режим по п. 4.5.

5 ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

- 5.1 Техническое обслуживание является мерой поддержания работоспособности УУ, предупреждения поломок и неисправностей, а также повышения надежности работы, повышения безотказности и увеличения срока службы.
 - 5.2 В процессе эксплуатации необходимо проводить следующие виды технического обслуживания:
 - внешний осмотр;
 - проверка работоспособности;
 - профилактические работы.
 - 5.3 Внешний осмотр УУ необходимо проводить ежедневно, при этом проверяется:
 - наличие давления по манометрам МН1 и МН2 (давление должно соответствовать проектному режиму);
 - плотность закрытия затвора клапана (по отсутствию утечек через дренажную трубку сигнальной линии).
- 5.4 Проверка работоспособности УУ необходимо проводить один раз в квартал, при этом необходимо:
 - провести внешний осмотр по п. 5.3:
 - проверить состояние уплотнений;
 - проверить состояние крепежных деталей;
 - проверить состояние проходных отверстий компенсаторов КМ1 и КМ2 дренажных трубок.
- 5.5 Профилактические работы УУ должны по возможности совмещаться с профилактическими работами установки пожаротушения, но не реже чем 1 раз в 3 года, при этом необходимо выполнить следующие операции:
 - закрыть задвижку ЗД в системе на подводящем трубопроводе;
 - открыть кран КНЗ, слить воду через дренажное отверстия в клапане.
 - 5.5.1 Выполнить обслуживание клапана:
 - снять крышку 12, открутить пробки 11, вынуть ось 3, вынуть затвор 2;
 - произвести осмотр резиновой пластины 6 и прокладки 13, при необходимости заменить;
 - произвести чистку компенсатора 7 (выполненного в корпусе для DN65 и DN80, или установленного на затворе для DN100 и DN150) и каналов клапана 1 от загрязнений;
 - провести проверку работоспособности обратного клапана 8 на герметичность, при необходимости заменить;
 - произвести очистку внутренних поверхностей клапана 1 от загрязнений;
 - произвести осмотр поверхности седла 4 клапана и устранить обнаруженные дефекты;
 - произвести сборку клапана в соответствии с рисунками 5, 6.
 - 5.5.2 Выполнить обслуживание УУ:
 - произвести проверку работы кранов КН1, КН2 и КН3, герметичность уплотнений, при необходимости заменить;
 - произвести проверку работы трехходовых кранов ВМ1 и ВМ2, при необходимости смазать смазкой или заменить;
 - произвести чистку компенсаторов КМ1 и КМ2 дренажных трубок;
 - произвести осмотр и проверку работы манометров МН1 и МН2.
 - 5.6 После проведения профилактических работ УУ установить в дежурный режим по п. 4.5.
 - 5.7 Провести пробный ручной пуск по п. 4.7

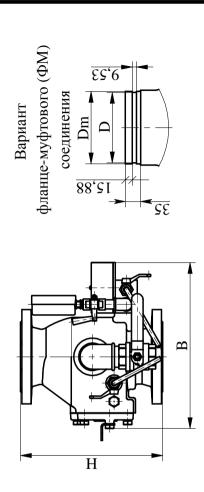
6 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

- 6.1 Требования безопасности по ГОСТ 12.2.003-91 и ГОСТ Р 53672-2009, а также согласно Правилам устройства электроустановок, утвержденные Главгосэнергонадзором России.
 - 6.2 Доступ к УУ должен быть удобным и безопасным согласно ГОСТ 12.4.009-83.
 - 6.3 Запрещается проведение регулировок и наладочных работ на УУ в дежурном режиме.

7 ГАРАНТИЙНЫЕ ОБЯЗАТЕЛЬСТВА

Гарантийный срок эксплуатации УУ составляет 3 года со дня ввода в эксплуатацию, но не более 3,5 лет со дня отгрузки потребителю при соблюдении потребителем условий эксплуатации, транспортирования и хранения.

8 ТРАНСПОРТИРОВАНИЕ И ХРАНЕНИЕ


- $8.1\,$ Условия транспортирования и хранения УУ в части воздействия климатических факторов внешней среды 5 по Γ OCT 15150-69.
- 8.2 УУ следует транспортировать в транспортной таре на любых крытых транспортных средствах в соответствии с нормативными документами, действующими на данном виде транспорта.
- 8.3 Транспортирование УУ в районы Крайнего Севера и труднодоступные районы, и хранение производить по ГОСТ 15846-2002.

9 КОМПЛЕКТНОСТЬ

Наименование	Кол.	Примечание		
Узел управления в сборе	1			
Руководство по эксплуатации УУ	1			
Сопроводительная документация на манометры	2			
Прокладка крышки клапана	1	ЗИП		
Пластина затвора	1	то требованию заказчика		
Уплотнительное кольцо модуля УУ	3			
Уплотнительное кольцо компенсатора (или болта) затвора	1			

10 СВИДЕТЕЛЬСТВО О ПРИЕМКЕ И УПАКОВКЕ

Узел управления УУ-С/1,6В-ВФ	O4 «Прямоточный»- заводской №
соответствует техническим требованиям ТУ	
годным к эксплуатации, упакован согласн изготовителя.	о требованиям конструкторской документации завода-
ОТК штамп ОТК	число, месяц, год
личная подпись штами отк	тисло, месяц, год
Упаковщик	
личная полпись	число, месян, год

Тип	соединения	Φ	Ф	Φ	Φ	МФ
Macca,	KT	30	32	40	<i>SL</i>	8,85
Dm		-	ı	1	1	165
L,	MM	440	450	400	440	440
H,	MM	315	335	325	450	450
В,	MM	320 315	340 335	380 325	470 450	470 450
n,	MM	4	4	8	8	8
d,	MM	18	18	18	22	22
Ď,	MM	145	160	180	240	160,78 22
Dφ,	MM	180	195	215	280	,
DN		9	80	100	150	150

Рисунок 1 - Узел управления спринклерный водозаполненный

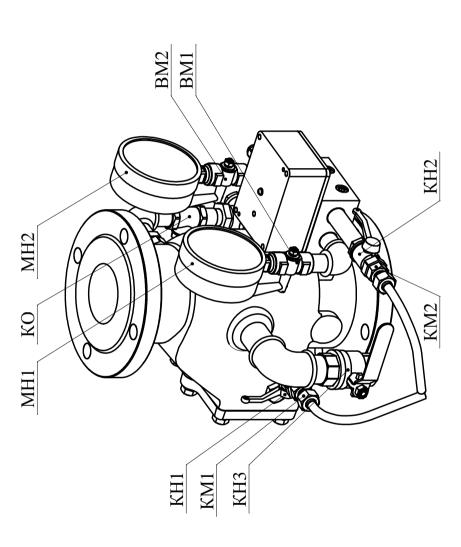


Рисунок 2 - Узел управления спринклерный водозаполненный DN65, DN80.

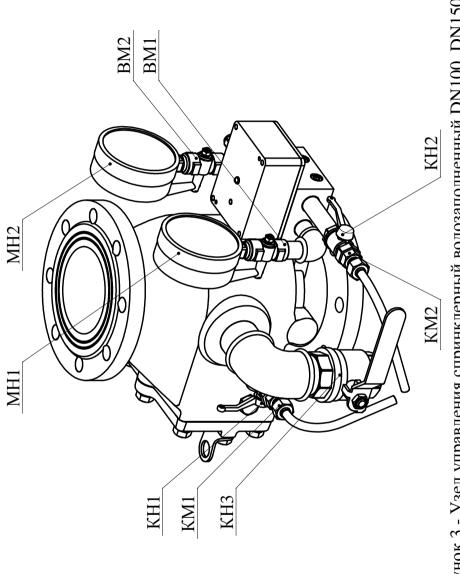


Рисунок 3 - Узел управления спринклерный водозаполненный DN100, DN150.

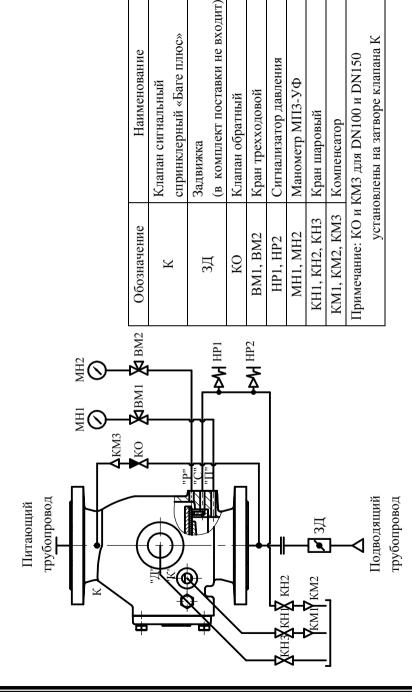


Рисунок 4 - Схема гидравлическая принципиальная

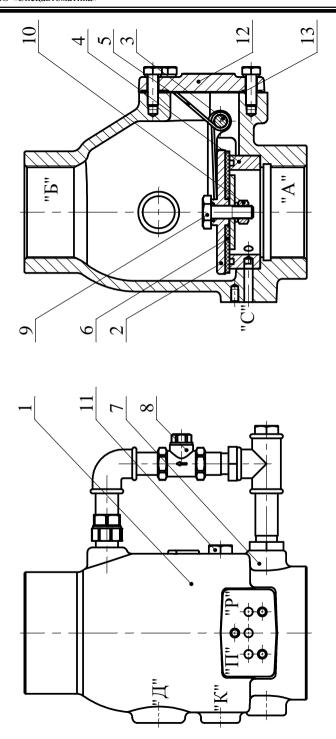


Рисунок 5 - Клапан сигнальный спринклерный «Баге плюс» DN65, DN80.

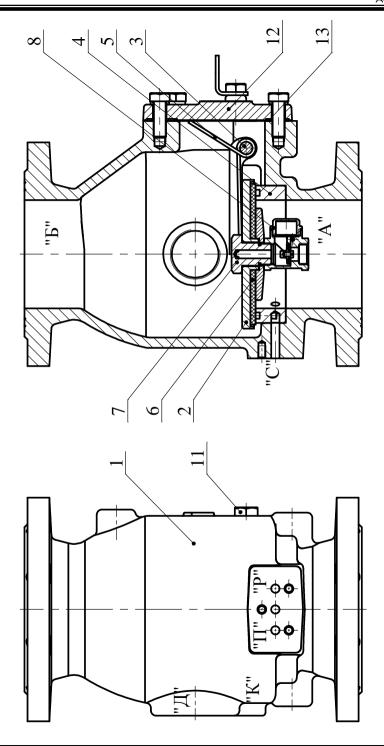


Рисунок 6 - Клапан сигнальный спринклерный «Баге плюс» DN100, DN150.

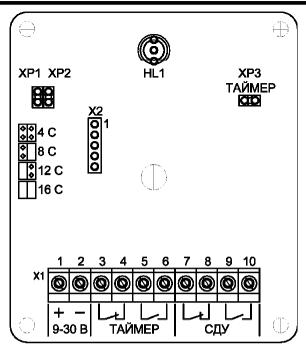


Рисунок 7 - Печатная плата модуля УУ с расположением клемм и перемычек

Сертификат соответствия С-RU.ПБ01.В.02844, действителен до 09.10.2019.

СМК сертифицирована по стандарту ГОСТ ISO 9001-2011.

Адрес предприятия-изготовителя:

659316, Россия, Алтайский край, г. Бийск, ул. Лесная, 10.

ЗАО «ПО «Спецавтоматика».

Контактные телефоны:

Отдел сбыта - (3854) 44-90-42;

Консультации по проектированию и обслуживанию установок пожаротушения можно получить по бесплатному телефону 8-800-2008-208.

ΦΑΚC: (3854) 44-90-70. E-mail: info@sauto.biysk.ru

http://www.sauto.biysk.ru/

Сделано в России